Original Russian Text Copyright © 2001 by Makarova, Moiseev, Zemtsova.

Synthesis and Cyclization of Diketones from the Adamantane Series

N. V. Makarova, I. K. Moiseev, and M. N. Zemtsova

Samara State Technical University, Samara, 443010 Russia

Received April 27, 2000

Abstract—Cyclic β - and γ -diketones of the adamantane series were synthesized by reactions of chlorides of 1-adamantanecarboxylic acids and 1-adamantyl bromomethyl ketone with cyclic enamines 1-morpholino-1-cyclopentene and 1-morpholino-1-cyclohexene. Cyclization of the β -diketones obtained was performed by reaction with hydroxylamine and phenylhydrazine.

β-Diketones are well-known initial compounds in the syntheses of quite a number of heterocycles [1]. However a synthesis of β -diketones of adamantane series was considered only in a few articles. In [2, 3] was described the application of metal complexes (of copper or cobalt) from aliphatic β -diketones to the preparation of α -(1-adamantyl)- β -dicarbonyl compounds. For instance, by reaction between copper bis(3-methylpentane-2,4-dithionate) with 1-bromo-adamantane at heating in chloroform or chlorobenzene for 48 h were obtained 3-(1-adamantyl)-3-methylpentane-2,4-diones [3].

Cyclic β -diketones can be prepared by Stork reaction, namely by acylation of enamines with acyl chlorides in the presence of triethylamine followed by hydrolysis [4–6]. This reaction is best studied on the cyclic enamines and acyl chlorides of aliphatic [7] and aromatic acids [8, 9]. Here in some cases were separated intermediate vinylog amides [10], the reaction course was studied with NMR spectroscopy [11], and also was elucidated the influence of various bases [12], of enamine cycle size [13], was determined the structure of β -diketones formed [14, 15], and were investigated further chemical transformations thereof [16]. The cyclic β -diketones at certain basicity of the medium can be cleaved into ketocarboxylic acids with chain elongation [17–21].

In extension of our studies [22–26] on the synthesis of carbonyl derivatives of adamantane series we carried out reactions of 1-adamantylcarbonyl chloride (I), 3-bromo-1-adamantylcarbonyl chloride (II), and 1-adamantylacetyl chloride (III) with cyclic enamines (1-morpholino-1-cyclopentene and 1-morpholino-1-cyclohexene) and obtained the corresponding diketones. The reactions were performed in chloroform in the presence of anhydrous triethylamine, and the subsequent hydrolyses was done with

10% hydrochloric acid. Apparently intermediately form unstable in air β -aminovinyl ketones that afford on hydrolysis 2-(1-adamantanoyl)cyclopentane-1-one (**IV**), 2-(1-adamantanoyl)cyclohexane-1-one (**Va**), 2-(3-hydroxy-1-adamantanoyl)cyclohexane-1-one (**Vb**), and 2-(1-adamantanoylmethyl)cyclohexane-1-one (**Vc**). Similar to the synthesis of 3-hydroxy-1-adamantyl methyl ketone [22] in this reaction at the hydrolysis stage the bromine is replaced by hydroxy group.

Aiming at preparation of new γ -diketones of the adamantane series we carried out a reaction of 1-adamantyl bromomethyl ketone (**VI**) with 1-morpholino-1-cyclopentene and 1-morpholino-1-cyclohexene in benzene followed by hydrolysis with 10% hydrochloric acid. As a result were isolated 2-(1-adamantanoylmethyl)cyclopentan-1-one (**VII**, n = 0), and 2-(1-adamantanoylmethyl)cyclohexan-1-one (**VIII**, n = 1).

This reaction is a continuation of the study on the chemical properties of bromoketone **VI**. Formerly was studied the behavior of ketone **VI** in N-alkylation of amines [25], C-alkylation of diethyl malonate [27], and O-alkylation with sodium or potassium methylate (ethylate, isopropylate, *tert*-butylate) [28].

In order to investigate the chemical properties of diketones from adamantane series and in extension of our studies on heterocycle synthesis we carried out reactions of β -diketone (**IV**) with hydroxylamine hydrochloride and phenylhydrazine. As a result were obtained respectively 3-(1-adamantyl)-5,6-dihydro-4*H*-cyclopenta[c]isoxazole (**IX**) and 3-(1-adamantyl)-2-phenyl-2,4,5,6-tetrahydro[c]pyrazole (**X**). Yields, properties, elemental analyses, and IR spectra of compounds synthesized are listed in Table 1, and their ¹H NMR spectra in Table 2.

$$(CH_2)_x + C(CH_2)_y + C(CH_2)_x + C(CH_$$

I, R = H, y = 0; **II**, R = Br, y = 0; **III**, R = H, y = 1; **IV**, x = 0, y = 0; **Va**, x = 1, y = 0; **Vb**, x = 1; **Vc**, x = 1, y = 1.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 37 No. 2 2001

Table 1. Physico-chemical characteristics of compounds synthesized

Compd.	Yield, %	mp, °C	R _f (eluent)	IR spectrum, v, cm ⁻¹				Found, %			F1-	Calculated,		%
				CH ₂ Ad	С=О	ОН	C=N	С	Н	N	Formula	С	Н	N
IV	51	96-98	0.37 (acetone– CCl ₄ , 1:4)	2900, 2850	1740	_	_	79.85	7.05	_	$C_{16}H_{17}O_2$	79.64	7.10	
Va	53	131–132	T	2920, 2870	1700	_	-	78.50	9.25	_	$C_{17}H_{24}O_2$	78.42	9.29	
Vb	50	98-100	0.54 (acetone)	2910, 2860	1690	3360	-	74.00	8.70	_	$C_{17}H_{24}O_3$	73.88	8.75	
Vc	48	115–117	0.55 (acetone– CCl ₄ , 1:4)	2890, 2840	1700	_	_	78.80	9.55	_	$C_{18}H_{26}O_2$	78.79	9.55	
VII	76	54-55	0.26 (acetone– CCl ₄ , 1:4)	2910, 2860	1730	_	_	78.00	9.15	_	$C_{17}H_{24}O_2$	78.42	9.29	
VIII	73	255-256	-T- /	2920, 2860	1740	_	-	79.00	10.00	_	$C_{18}H_{26}O_2$	78.79	9.55	
IX	55	168–170	0.33 (acetone– CCl ₄ , 1:1)	2900, 2860	_		1650	79.00	8.95	5.50	C ₁₆ H ₂₁ NO	78.97	8.70	5.76
X	58	152-153		2910, 2850	_ 	_ 	1610	83.10	8.50	8.90	$C_{22}H_{26}N_2$	82.97	8.23	8.80

Table 2. ¹H NMR spectra of compounds synthesized, δ, ppm

Compd.	CH ₂ of adamantane	CH CH of adamantane of cyclo		α-CH ₂ of cycloalkane	CH of cycloalkane	ОН	<u>CH</u> ₂ –Ad	Other signals
IV	1.65-1.75 d (12H)	2.00 s (3H)	1.40 m (4H, 2CH ₂)	2.30 q (2H)	3.85 t (1H)	_	_	_
Va	1.65–1.75 d (12H)	1.95 s (3H)	1.25 m (6H, 3CH ₂)	2.50 q (2H)	3.55 t (1H)	-	_	_
Vb	1.60–1.75 d (12H)	1.80 s (2H)	27	2.25 q (2H)	3.58 t (1H)	3.2 s (1H)	_	=
Vc	1.65–1.75 d (12H)	1.96 s (3H)	2,	2.38 q (2H)	3.63 t (1H)		3.25 s (2H)	_
VI	1.68–1.75 d (12H)	1.80 s (3H)	1.25–1.48 m (4H, 2CH ₂)	2.38 q (2H)	3.60 m (1H)	_	_	3.25 d [2H, C(=O)CH ₂]
VII	1.60–1.75 d (12H)	2.05 s (3H)	1.10 m (6H, 3CH ₂)	2.50 q (2H)	3.95 m (1H)	-	_	4.60 d [2H, C(=O)CH ₂]
IX	1.75–1.80 d (12H)	1.95 s (3H)	1.05–1.2 m (4H, 2CH ₂)	2.65 t (2H)	_	_	_	- 21
X	1.75–1.80 d (12H)	1.90 s (3H)	1.50–1.60 m (4H, 2CH ₂)	2.48 t (2H)	_	_	_	6.60–7.05 m (5H, C ₆ H ₅)

EXPERIMENTAL

¹H NMR spectra were registered on spectrometer Bruker AC-300 (300.13 MHz)in DMSO, internal reference HMDS. IR spectra were recorded on Specord M-80 instrument from KBr pellets. The purity of compounds was tested by TLC on Silufol UV-254 plated, development in iodine vapor.

2-(1-Adamantanoyl)cyclopentan-1-one (IV) and 2-(3-R-1-adamantanoyl)cyclohexan-1-ones (Va-c). To a solution of 4.7 mmol of enamine and 0.72 ml (5.2 mmol) of freshly distilled triethylamine in anhydrous chloroform cooled to 0°C was added dropwise a solution of 4.7 mmol of acyl chloride **I-III** in 10 ml of anhydrous chloroform. The mixture was stirred at 0°C for 6 h and left standing in refrigerator

for 24 h. Then 20 ml of 10% HCl was added, and the mixture was boiled for 6 h. The chloroform layer was separated, washed with 10% solution of Na₂CO₃, then with water, dried, the chloroform was distilled off, and the dry residue was recrystallized first from hexane and then from 50% aqueous ethanol.

2-(1-Adamantanoylmethyl)cyclopentan-1-one (VII) and 2-(1-adamantanoylmethyl)cyclohexan-1-one (VIII). A solution of 1 g (3.9 mmol) of haloketone VI and 4.3 mmol of enamine in 10 ml of anhydrous benzene was refluxed for 4 h. Then 10 ml of 10% HCl was added, and the mixture was refluxed for 12 h more. The benzene layer was separated, washed with water, dried on calcium chloride, the benzene was distilled off, and the residue was recrystallized from hexane.

3-(1-Adamantyl)-5,6-dihydro-4*H***-cyclopenta**[*c*]**-isoxazole (IX).** To a solution of 1 g (4,1 mmol) of diketone **IV** in 7 ml of ethanol was added 0.35 g (5 mmol) of hydroxylamine hydrochloride in 3 ml of water. The reaction mixture was heated for 6 h, cooled, and the crystalline precipitate (fine needles) was filtered off.

3-(1-Adamantyl)-2-phenyl-2,4,5,6-tetrahydro[*c***]-pyrazole (X).** A mixture of 0.5 g (2 mmol) of diketone **IV**, 0.24 ml (2.5 mmol) of phenylhydrazine, and 10 ml of ethanol was refluxed for 6 h. The precipitate separated on cooling was filtered off and washed with cold ethanol.

REFERENCES

- Pashkevich, K.I., Saloutin, V.I., and Postovskii, I.Ya., *Usp. Khim.*, 1981, vol. 50, no. 2, pp. 325–354.
- 2. Gonzalez, A., Marquet, J., and Moreno-Manas, M., *Tetrahedron*, 1986, vol. 42, no. 15, pp. 4253–4257.
- 3. Lloris, M.E., Marquet, J., and Moreno-Manas, M., *Tetrahedron Lett.*, 1990, vol. 31, no. 51, pp. 7489–7492.
- Hunig, S. and Hoch, H., Chem. Ber., 1972, vol. 105, no. 7, pp. 2197–2215.
- 5. Li, Liangzhu and Zhang, Xusheng, *Chem. J. Chin. Univ.*, 1986, vol. 7, no. 2, pp. 137–140.
- Vilsmaier, E., Dorrenbacher, R., and Muller, L., *Tetrahedron*, 1991, vol. 46, no. 24, pp. 8103–8116.
- 7. Descotes, G. and Querou, Y., *Bull. Soc. Chim.*, 1968, no. 8, pp. 3395–3400.
- 8. Campbell, R.O. and Jung, J.A., J. Org. Chem., 1965,

- vol. 30, no. 11, pp. 3711-3714.
- 9. Mitsuhashi, Kemmotsu, Nomura, Keiichi, Watanabe, Isao, and Minami, Norio, *Chem. Pharm. Bull.*, 1969, vol. 17, no. 8, pp. 1572–1577.
- 10. Zhang, Pang and Li, Lian-chu, *Synth. Commun.*, 1986, vol. 16, no. 8, pp. 957–965.
- 11. Kirrmann, A. and Warselman, C., *Bull. Soc. Chim.*, 1967, no. 10, pp. 3766–3772.
- 12. Solomoichenko, T.N., Kozhemyakina, I.M., Zaslavskii, V.G., Minkina, L.V., and Savelova, V.A., *Ukr. Khim. Zh.*, 1990, vol. 56, no. 8, pp. 867–871.
- 13. Hunig, S. and Hoch, H., *Tetrahedron Lett.*, 1966, no. 42, pp. 5215–5220.
- 14. Opitz, G. and Tempel, E., *Lieb. Ann.*, 1966, vol. 699, no. 1, pp. 74–87.
- 15. Jacquier, R. and Petrus, F., *Bull. Soc. Chim.*, 1970, no. 7, pp. 2599–2636.
- 16. Grudwell, E., Pinnegar, M.A., and Templeton, W., *J. Med. Chem.*, 1965, vol. 8, no. 1, pp. 41-45.
- 17. Hunig, S., Buysch, H.J., and Hoch, H., *Chem. Ber.*, 1967, vol. 100, no. 12, pp. 3996–4009.
- 18. Hunig, S. and Buysch, H.J., *Chem. Ber.*, 1967, vol. 100, no. 12, pp. 4010–4016.
- 19. Hunig, S. and Buysch, H.J., *Chem. Ber.*, 1967, vol. 100, no. 12, pp. 4017–4026.
- 20. Sokolovskaya, S.V. and Maevskii, Yu.V., Dep. VINITI, Moscow, 1984, no. 920khp-84.
- 21. Kaga, Harumi, Miura, Maura, Masakatsu, and Orito, Kazuhiko, *Synthesis (BRD)*, 1989, no. 11, pp. 864–866.
- 22. Makarova, N.V., Moiseev, I.K., and Zemtsova, M.N., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 4, pp. 701–702.
- 23. Yagrushkina, I.N., Zemtsova, M.N., Klimochkin, Yu.N., and Moiseev, I.K., *Zh. Org. Khim.*, 1994, vol. 30, no. 6, pp. 842–845.
- 24. Yagrushkina, I.N., Zemtsova, M.N., and Moiseev, I.K., *Zh. Org. Khim.*, 1994, vol. 30, no. 7, pp. 1072–1073.
- 25. Makarova, N.V., Zemtsova, M.N., and Moiseev, I.K., *Khim. Geterotsiklo. Soed.*, 1994, no. 5, pp. 621–623.
- Makarova, N.V., Zemtsova, M.N., and Moiseev, I.K., Khim. Geterotsikl. Soed., 1994, no. 8, pp. 1038–1040.
- 27. Lauria, F., Vecchietti, V., and Bergamaschi, M., *Farmaco Ed. Scient.*, 1967, vol. 22, no. 9, pp. 681-691.
- 28. Novikova, M.I., Isaev, S.D., Kazan'uk L.V., Abstracts of Papers, *International Conference on Alkane Activation and Cage Compounds Chemistry*, Kyiv, Ukraine, 1998.